Query as You Need: Query-centric Diffusion Policy for
Generalizable Robotic Assembly

Ziyi Xu* Haohong Lin*
Department of Mechanical Engineering Department of Mechanical Engineering
Carnegie Mellon University Carnegie Mellon University
ziyix2Q@andrew.cmu.edu haohongl@andrew.cmu.edu
Shiqi Liu* Ding Zhao
Department of Mechanical Engineering Department of Mechanical Engineering
Carnegie Mellon University Carnegie Mellon University
shiqiliu®@andrew.cmu.edu dingzhao@cmu.edu

Abstract: The robotic assembly task poses a key challenge in building generalist
robots due to the intrinsic complexity of part interactions and the sensitivity to noise
perturbations in contact-rich settings. The assembly agent is typically designed in a
hierarchical manner: high-level multi-part reasoning and low-level precise control.
However, implementing such a hierarchical policy is challenging in practice due
to the mismatch between high-level skill queries and low-level execution. To
address this, we propose the Query-centric Diffusion Policy (QDP), a hierarchical
framework that bridges high-level planning and low-level control by utilizing
queries comprising objects, contact points, and skill information. QDP introduces
a query-centric mechanism that identifies task-relevant components and uses them
to guide low-level policies, leveraging point cloud observations to improve the
policy’s robustness. We conduct comprehensive experiments on the FurnitureBench
in both simulation and real-world settings, demonstrating improved performance
in skill precision and long-horizon success rate. In the challenging insertion and
screwing tasks, QDP improves the skill-wise success rate by over 50% compared
to baselines without structured queries.

Keywords: Robotic Assembly, Diffusion Models

| Object Parts
Legs
Tabletop

+ Skill Library

1 Stabilize ! Table leg [3] should be
! Pick i screwed in Contact Point [9]

i Insert

Offline Dataset ==——> Intra-part Reasoning —— ? —> Inter-part Precise Control = Online Deployment

Figure 1: The overview of the furniture assembly task. The task nature comprises three parts:
objects, contact points, and skill library. A good assembly policy should identify the correct contact
relationship given the assembly context and generate precise action sequences for the robot arm,
bridging the gap between intra-part reasoning and inter-part precise control.

*Equal contribution.

1 Introduction

Contact-rich manipulation has been widely recognized as a critical task when building generalist
intelligent robots [1, 2, 3]. In this field, robot assembly [4, 5] stands out because it requires policies
that are both precise and versatile to control the robot arm and interact with multiple objects. Despite
the access to some offline demonstration data from human priors, robotic assembly poses two key
challenges: inter-part relational reasoning and intra-part precise control in the online deployment.
As is visualized in Figure 1, the first challenge arises from the long-horizon, multi-part nature of
the task, which demands accurate prediction of the next skill based on current observations, as
well as identifying the correct objects for interaction. The second challenge becomes especially
difficult in contact-rich scenarios where successful assembly hinges on precise object alignment.
Even minor noise or occlusions in raw sensory observations can completely fail the sim-to-real
transfer of low-level non-prehensile control policies.

Various methods have been explored to address these challenges. One line of work focuses on
high-level reasoning by leveraging cross-modality affordance-based approaches [6], graph-based
key point reasoning [7], or skill-based retrieval [8, 9]. However, these methods rely heavily on
heuristic-based low-level controllers and predefined skill libraries, thus limiting their adaptability and
precision. Meanwhile, recent advances in robot learning have significantly improved the precision
and adaptability of low-level policies, thanks to (i) powerful imitation learning backbones such as
diffusion models [10, 11, 12] and transformer-based architectures [13, 14], (ii) enhanced learning
regimes like residual policies [15] and safe failure prevention methods [16], and (iii) the integration of
sensor modalities beyond vision and proprioception, such as tactile sensing [17, 9] or point clouds [18]
for improved contact modeling. Still, transferring these policies from simulation to the real world
remains challenging due to the inherent difficulty of accurately simulating contact dynamics.

In addition to the individual challenges of high-level and low-level policy design, integrating these
two levels in a hierarchical framework introduces further complications. For instance, high-level
policies may mis-specify objects or skills, causing the low-level policy to rely on the false queries
that include irrelevant factors such as background pixels or non-impactful objects, ultimately leading
to failure in real-world environments. Hence, it is crucial to establish a parsimonious proxy between
high-level and low-level modules.

To address these challenges and establish a robust interface between high-level and low-level modules,
we propose Query-centric Diffusion Policy (QDP). Our framework leverages powerful pre-trained
foundation models to extract high-level information by specifying both the requisite skills and target
objects as a query. This query then serves as a powerful precondition to guide point cloud-based
low-level control, forcing the robot agent to focus on the current task-relevant components when
generating the action chunks under different contexts. Our contributions are threefold:

* We introduce QDP, a query-centric diffusion policy framework that selects task-relevant queries
for guiding low-level policies, enabling accurate skill selection and precise object interaction.

* We propose a query-conditioned policy learning scheme to model the complex geometry captured
by point cloud observations, improving precision and facilitating sim-to-real transfer.

* We demonstrate the effectiveness of our approach on FurnitureBench in both simulation and
real-world settings, showcasing robust performance under object misalignment and human inter-
vention.

2 Related Work

Sequential decision making for robotic assembly Behavior learning methods are promising for
addressing the combinatorial challenges of assembly sequence planning and fine-grained manipulation
in robotic assembly tasks. Prior works have tackled the former problem by designing feasible assembly
graphs [19], disassembling strategies [20], rearranging components through segmentation [21], or
even utilizing manual guidance [22]. While the latter challenge of manipulation involves precise

control and adaptability, recent studies centered around FurnitureBench have employed contact-
rich manipulation [9], residual policies bridging sim-to-real gap [18], [23], fine-tuning diffusion
policies [24], or extracting skills from offline dataset [8]. Our approach tackles the two challenges by
developing a unified hierarchical decision-making framework for robotic assembly.

Hierarchical imitation learning Instead of learning the entire task using a single policy, we can
decompose the long-horizon assembly problem into reusable sub-tasks, thereby introducing a hierar-
chical learning framework. This typically involves a high-level policy and a set of low-level policies.
On the high-level decision-making side, approaches often rely on the observable conditions [25]
and accurate system dynamics [26] to realize the precondition of applying skill and its effects. On
the low-level side, previous skill-based reinforcement learning methods benefit from generalization
through skill discovery but face challenges in skill chaining [27] and reward design [9], especially
in contact-rich environments. In this context, imitation learning can bridge the gaps between sub-
tasks and avoid reward shaping by using full demonstration data. Previous data-driven hierarchical
frameworks have included approaches such as sequence segmentation [28], human-in-the-loop data
collection systems [29], and high-level planning based on heuristics [30]. Our focus, however, is on
designing a hinge connecting high-level and low-level, generalizing across different assets and orders.

Generative diffusion model for planning Recent advancements in diffusion-based generative
strategies have led to widespread adoption in robotics, particularly in imitation learning [10] and
planning [11, 12]. These approaches have proven effective in capturing multi-modal distributions for
planning and policy learning. Building on this diffusion-based framework, previous work explored
learning visuomotor policy by integrating various conditions, including 3D representation [31],
equivariant models [32], and affordance-based guidance [33], or performing hierarchical abstrac-
tion [34, 35, 36, 37].

3 Problem Formulation

Task objective Given a multi-part, long-horizon robot assembly task, our goal is to both generalize
in policy-chaining and enhance the quality of robotic assembly, especially in bridging simulation and
real-world environments. In general, the objective of our furniture assembly task contain improve-
ments in two parts: higher level decision-making and lower level action-execution. Specifically, to
accurately generate a feasible high-level execution sequence and precise low-level policies learned by
3D representation.

Skills: motion primitives Following the setup in FurnitureBench [5], we divide the full assembly
sequence to a set of skills {stabilize, grasp, insert, screw}, where stabilize refers to pushing the
tabletop to the corner of the stabilizer, grasp is to pick up the objects with propose grasp pose,
insert requires inserting objects to the target contact point with extra precision, and screw focuses on
threading the table legs upright into the holes.

Objects: furniture parts To equip robots with the capability to assemble a wide range of furniture,
we classify furniture components into two major categories.

* Primary Component: These are the core structures of the furniture, such as tabletops, lamp
bases, and chair seats.

* Secondary Components: These parts complete or assist the furniture’s function, including table
legs, lamp bulbs, and drawer handles.

Additionally, we define Contact Points as specific locations on a Primary Component where a
Secondary Component is meant to be attached.

Framework formulation Given the complexity of the task, we emphasize the importance of
effective querying. Assume we have a set of N, skill primitives as sub-tasks, V,, furniture parts and

Current segmented image History images and VLM Responses

N R Stabilize, Grasp,
Queried Skills { D
Insert, Screw...}
Last VLM 4 Contact Point
Response Point cloud Proprioception
V2 7
. Object ID
uery-centric Encoder
‘ Qe Contact Pts.
L¥2
| Vision Language Model Predictive Control (VLM-PC) | [Part Poses | [Contact Point Poses | [EEF Poses |
VLM Reasoning l -
N - Conditional Action Decoder SkillID
Current installation State:
- Secondary Component [2] is screwed in Contact Point [8].]
+ Secondary Component [3] is screwed in Contact Point [9]. .
+ Secondary Component [4] is screwed in Contact Point [6]. i }
+ Secondary Component [5] is held by the gripper [10]. !]
+ Contact Point [7] is available. ' '
Select the proper skill to use: i]
+ Insert the held Secondary Component [5] into the available Contact Point [7] i 1
. N i NolsyActlons Action Seq 1
Extraction of Queries |]
| K . .]
insert (5, 7) F L €= [€0, - €] Diffusion Denoising a = [ag, .., ar] !

Figure 2: The proposed QDP framework adopts a hierarchical structure composed of a high-level and
a low-level policy. The high-level policy processes the initial RGB image of the scene, annotates it as
SoM with SAM 2 [39], and leverages a Vision-Language Model (VLM) to identify key components.
Using VLM Predictive Control (VLM-PC), it takes in the current image and interaction history to
dynamically select skills and objects as queries. At the core of the system, the low-level policy
takes in the queries and operates directly on point cloud observations and robot proprioception. The
query-centric encoder explicitly estimates the poses of the queried components in the current context
and generates precise action sequences of the end effector. By conditioning a diffusion policy on these
skill queries and assembly targets, the QDP generates fine-grained, context-aware action sequences.

N, contact points available on the workbench, we define a query set Q as:

Ns; Np

02 {g=(q)) e (0,1} N | ZZq“) 1})
(=1 i=1 j=

At every sub-task performance, our system generates a query qu)

of furniture part 4, contact point j under the sub-task £.

€ @, denoting a one-hot selection

In our task, the action space A consists of the end-effector’s delta poses and absolute poses. The state
space S includes the initial and goal assembly states of the full task, along with observation space O
comprising RGB and depth inputs from external cameras. Additionally, it contains workspace-related
states, including the states of individual furniture parts s;, contact points s;, and the end-effector s..

Building on the notation above, we formulate our robot manipulation task as a complex, long-
horizon, partially observable query-centric Task and Motion Planning (TAMP) problem [38]. This
formulation involves a query-centric execution sequence orderly obtained from Q, a series of motion
planning procedures for each sub-task, and the initial and goal states drawn from S. Each motion
planning procedure maps an observation input from O to an action output in A.

4 Methodology

In this section, we will elaborate on the core design of our proposed query-centric diffusion policy.
The methodology begins with the generation of queries from VLM-PC in the high-level part (Sec-
tion 4.1), followed by the introduction of query-centric diffusion policy training in the low-level
phase (Section 4.2). The entire pipeline of our method is illustrated in Figure 2.

4.1 High-level: Sequence Generator

Our high-level policy aims to mitigate a long-horizon, contact-rich furniture assembly task by
commanding the robot to sequentially apply low-level skills. By leveraging VLM Predictive Control
(VLM-PC) [40], our method dynamically selects appropriate low-level skills from the skill library

based on the current scene image and the history of interactions. The model incorporates a re-
planning mechanism after each skill execution, allowing the system to handle external perturbations
and changes in the environment effectively.

Components Identification The high-level policy identifies furniture components from the initial
scene image before installation. To improve the visual grounding capabilities of the VLM, which
inherently lacks precise visual grounding [41], we first segment the input image using SAM 2 [39]
and annotate it with markers generated by Set-of-Mark (SoM) [42] at the beginning of the installation.
The annotated image is then processed by a VLM, which is prompted to identify markers for the
primary components, secondary components, contact points, and the robotic arm gripper. Since the
VLM relies on both the current image and the interaction history to maintain marker consistency
across different steps, we track the initial segmentation masks throughout the sequence. Figure 2
demonstrates the component identification pipeline.

Dynamic Skill Selection The high-level policy dynamically selects the most suitable low-level skill
to execute next. After completing each selected skill, the VLM is prompted to re-plan the installation
based on the annotated current image and previous 7 interaction histories, including past annotated
images and VLM outputs. The VLM first reasons the current installation progress, and identifies
the state of each furniture component in case of external perturbations during installation. It is then
prompted to select the most appropriate skill from the skill library. The dynamic skill selection
process is shown in Figure 2.

4.2 Low-level: Query-conditioned Action Generator

We develop a query-centric low-level policy that generates an action chunk under the observation
input and the selected query qff) from the high-level policy. To bridge the sim-to-real gap, we propose
to use a point cloud as the visual observation input. By using offline point cloud generated from mesh,
we first train a query-centric encoder and explicitly supervise the output with pose of the queried
furniture part and contact point. We then train an action decoder for each sub-task with the true
state of the queried furniture part as input using the collected demonstrations in simulation under a
diffusion policy framework. Together with the perception encoder, forming a two-stage imitation
learning structure for the low-level policy.

Query-centric Encoder The query-centric encoder is trained using the full-task dataset. To extract
useful latent representations from the point clouds, we use a PointNet [43] architecture. The skill
query ¢ , furniture-part query ¢ and contact point query j are numerically input into the encoder
network through embeddings, concatenating the point cloud embedding. We also incorporate the
end-effector states into a fully connected layer, hypothesizing that these end-effector states will
help the encoder network focus on the specific furniture parts being manipulated at the current
given moment. The network is a lightweight MLP network, with dropouts. Point clouds struggle
with accurate rotation estimation. Hence, we assume the furniture parts are rotation invariant in
z-axis, where the tabletop is constrained to rotate within the table plane, retaining only two euler
angles representing rotation. The MSE training loss Lgst is computed by a weighting among the
object-centric position P; , rotation I; and the contact-centric position P;, where]52]:BZ and ﬁj
denotes the estimation output:

Lest= Y a\f) - (all B = P+ BIR: — Ril*+ 1125 — Py %),)

qgﬁ)EQ

where «, 3, v are the coefficients of the weighted loss. The estimated poses, together with end-effector
states, are also useful in sub-task transition, where we set terminal checks to chain the sub-tasks.
Since this might fail in assembly check, a time-out check is set to prevent excessive steps of screwing.

Action Decoder The full-task demonstrations are first divided according to the sub-task categories,
and sub-task-specific policies are trained accordingly. The sub-task action decoder are built upon
the Diffusion Policy framework [10], leveraging a temporal CNN-based U-Net architecture with

FiLM conditioning layers to effectively model and generate precise action chunks. With the intuition
that action modality is more pronounced in position inputs, the denoising process is conditioned
on the true state of the queried furniture part, the corresponding contact point, and the additional
proprioception states of the end-effector. This allows the policy to learn to handle each sub-task /¢
with the necessary precision and contextual awareness. The decoder output is in the end-effector
operational space, further continued with an operational space controller (OSC) [44]. Starting from a
Gaussian noise a’, the denoising network eéé) with parameters 6 performs K iterations to gradually
denoise a random noise a’* into the noise-free action chunk a°, processed in the following equation:

N, N.
a" ! =q | a" — quz(f) ~eg(a’, k,s) | + ope,)

i=1j=1

where s = [s;, s, s¢| are the queried states from high-level policy, € ~ N(0,I) is the Gaussian noise,
parameterized function av, v, and oy, are generated by the noise scheduler. The combinatorial Mean
Square Error (MSE) training loss L 4o for the action generator policy is:

Lacr = [= 3" ¢ e (@ + ¢, b, 9)]? “
qgﬁ)EQ

S Experiments

5.1 Environment Design

Figure 3: QDP step-by-step assembly process (left). Visualization of a real-world point cloud (right).

Tasks Design: We demonstrate our pipeline on the Square Table assembly task, which involves
attaching four table legs to the tabletop. This task consists of three sub-tasks for each leg assembly:
grasp, insert, and screw, along with an additional stabilize step. The ultimate goal is to integrate all
four legs onto the tabletop in a feasible assembly sequence, which requires long-horizon decision-
making as well as stability and accuracy in both state estimation and action generation.

For numerical evaluation, we prefer using the One Leg assembly task, containing all four basic
sub-tasks as skill primitives. Notably, we define the success of the grasp not only by successfully
lifting the leg, but also by ensuring that the grasp occurs within a small, controlled area to prevent
dangerous grips or potential collisions with the other legs. We deploy our framework in simulation
using Isaac Gym [45], and validate it in the real world with a furniture assembly setup on the Kinova
Gen3 robotic arm. Details of the real-world harware setup are provided in Appendix A.2.

Demonstration Data Collection and Annotation We collected full-task demonstrations finishing
the whole furniture assembly sequence using a heuristic policy with Finite State Machine (FSM)
in simulation. During every step of the collection, we mark the queried furniture parts and contact
points in a numerical order, annotate sub-task transitions, and record the full states of the assets. In
the real-world deployment, policies are applied zero-shot, with no additional data collection required.
Full data collection details are provided in the Appendix A.3.1.

Baselines and Evaluation Protocol We evaluate QDP through three groups of experiments ranging
from high-level to low-level policies designed to assess baseline performance and overall effectiveness.
1) We evaluate low-level QDP with two common IL baselines including Behavior Cloning (BC) and
DP3 [31] (detailed in Appendix A.3.2). 2) For low-level QDP, we perform two ablation studies —
removing the rotation invariance assumption (w/o rot-inv) and removing the query-centric structure
(w/o query) — along with three breakdown studies: a shape transformation (v/ shape), a variation in
assembly order (v/ order), and a tabletop perturbation (v/ tabletop) (detailed in Appendix A.3.3).
3) For high-level variants, we have QDP without VLM-PC (w/o VLM-PC), without marker (w/o
Marker) and without interaction history (w/o History) (detailed in Appendix A.4.1).

5.2 Results and Analysis
In the following part, we answer the following research questions:

* RQ1: How is QDP’s precision in both simulation and the real furniture assembly tasks?
* RQ2: How does each component of QDP contribute to its superior performance?

* RQ3: How is the robustness of QDP against multifarious external perturbations?

Table 1: Comparison of the sub-skills success rate among different baselines and ablation variants.

Method stabilize grasp insert screw

BC 0.92+0.04 0.41+0.14 0.00£0.01 0.08+0.09
DP3 0.83+0.10 0.47+0.02 0.09+£0.11 0.17+£0.03
QDP 0.95+0.06 0.64+0.14 0.5940.09 0.80+0.03

QDP w/o query 0.96 +0.03 0.60+0.10 0.06 £0.05 0.33 +0.09
QDP w/o rot-inv 0.96 £ 0.05 0.7040.08 0.50£0.08 0.424+0.13

QDP v/ shape 0.95+0.04 0.56+0.11 0.56+£0.12 0.76 £0.10
QDP v/ order — 0.38+£0.07 0.28£0.13 0.62+0.10
QDP v/ tabletop 0.88+£0.08 0.68+£0.08 0.46=+0.11 —

For RQ1, the overall success rate of QDP in performing the One Leg task in simulation is 32%. As
shown in Figure 7 and Table 1, our query-centric structure outperforms the baselines especially in the
insert and screw sub-task. Additionally, our framework shows a faster convergence in training low-
level policies compared with baseline methods. It is evident that jointly estimating all furniture parts
without the query structure results in a significant performance drop in the insert task. This decline
can be attributed to the improved attention provided by the query-centric approach, particularly
in focusing on the current executing furniture part. In contrast, a better symmetry representation
enhances performance in the screw sub-task. This is because the screw task demands precise
relocation, and the full quaternion representation may introduce ambiguity, hindering the network’s
interpretation. In the real-world deployment, QDP successfully completed the One Leg task in a
zero-shot manner, achieving a success rate of 7/18. The entire assembly process completed by QDP
is illustrated in Figure 3(a)-(e).

For RQ?2, we evaluate the importance of each design module in QDP low-level policy with two
variants: QDP w/o query and QDP w/o rot-inv. We illustrate in Table 1 the success rate of each
skill in the assembly process with these ablation variants in the simulation environments. The results
show that the structured queries and rotation invariance assumptions have a greater impact on the
low-level policy in the harder task, such as insert and screw.

We further evaluated 3 different variants of QDP high-level policy: QDP w/o VLM-PC, QDP
w/o Mark, and QDP w/o History. Figure 4(a) shows the evaluation results for different QDP
high-level policy variants; the result shows that removing specific design modules negatively im-
pacts performance. Excluding the VLM-PC (w/o VLM-PC) significantly reduces the success rate,
demonstrating the effectiveness of dynamic skill selection. Similarly, removing the SoM marks (w/o
Mark) impairs performance; notably, more errors occur due to incorrect skill query, showing that
the special reasoning capability is greatly reduced without facilitating with SoM. Finally, removing
historical interactions has the most severe effect, leading to a marked increase in incorrect skill
queries, emphasizing the critical role of maintaining historical context for sequential tasks. We further
analyzed the effect of varying interaction history length n, and the result is shown in Figure 4(b). The
success rate increases rapidly as the history length n increases and stabilizes after n > 3.

For RQ3, we evaluate the robustness of QDP under various perturbations. The breakdown results in
the simulation are shown in Table 1(lower). 1) We found that the shape transformation (v/ shape)
does not result in a significant drop in performance, especially in handling challenging tasks such
as insert, which aligns with our expectations. 2) In the order variation of the final leg (v/ order),

(a) (b)

QDP (Ours) - 2% 14% 8% n=1- 26% 30% 30% 10%
n=2- 54% 14% 10% 20%
w/o VLM-PC - 38% 8% 12% 2%
n=3- 64% 8% 8% 4% 6%
w/o Mark- 8% 8% 6% 24% 54%
n=5- 2% 14% 8%
w/o History - 100% n=7- 92%
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Success/Failure Rate Success/Failure Rate
9-8-7-6 (Success) 9-8-6-7 (Success) 8-9-7-6 (Success) 8-9-6-7 (Success) Incorrect Object Query (Failure) Incorrect Skill Query (Failure)

Figure 4: (a) Performance of different QDP high-level policy variants. The sequence 9 —+ 8 — 7 — 6
specifies the installation order of the contact points. Incorrect Skill Query indicates that the installation
failed because an incorrect skill type was selected. Incorrect Object Query means failure occurs due
to querying the wrong furniture component or Contact Point, even though the correct skill query is
used. (b) Effect of varying history lengths on performance. n = k indicates that the VLM receives
the current image along with the most recent % steps of interaction history as input.

Incorrect
Object Query (8)

High-level :Ilncorrect
— VLM-PC Failure (10) Skill Query (2)
] Insert Fail (22)
Grasp Success (24)
Manipulation eabillze
. Success (39) X
Failures (41) ==Insert Success (2) ==Screw Fail (2)
Lov.v—IeveIA Grasp Fail (15)
Policy Failure (58)
Total Trials (100) — ':'?ib(”zfe
— ail
Pose Estimation
Error (17)
High-level & Overall Success (32)
Low-level Success (32)

Figure 5: Sankey diagram illustrating the hierarchical flow of failure and success modes throughout
the One Leg process. We conducted 100 simulation experiments, with most failures occurring in pose
estimation and manipulation sub-tasks such as insert and grasp.

selecting the two holes closest to the camera often results in collisions with other assembled legs,
leading to sub-task failure during the insert phase. In contrast, switching between the two more
distant holes does not result in such issues. This demonstrates that our query-centric framework
generalizes across different contact points while also highlighting the importance of selecting feasible
contact points in generating the assembly sequence. 3) In simulation and real-world experiments, we
demonstrate the robustness of our closed-loop pose estimation and action diffusion module. Upon
introducing disturbances to the states of the furniture (v/ tabletop), the robot effectively detects these
changes, re-estimates the pose, and showcases the multi-modal capabilities of the action diffusion
module. A qualitative example is shown in Figure 6(left), where the robot arm is capable of adapting
to human perturbation on the tabletop when inserting the leg.

perturbatiorn

Figure 6: Robustness under perturbation, including disturbance of table-top in real (left) and shape
transformation in sim (right).

6 Conclusion

In this work, we proposed QDP, a hierarchical, query-centric diffusion policy framework for long-
horizon robotic assembly. By leveraging task-relevant queries, QDP effectively addresses both
inter-part relational reasoning and intra-part precision control, achieving strong performance in
multi-part assembly tasks. We believe QDP offers a promising step towards furniture assembly tasks,
but also a hint that challenges remain in scalable and generalizable robotic assembly.

Limitations

Despite its promising results, QDP has several limitations. Both the high- and low-level modules
are designed for “square-table-like” assembly scenarios, which restricts generalization to other
furniture types. Furthermore, the pose-based part representations sacrifice fine-grained geometric
detail, which is important for accurate low-level control. We do not further explore the sensitivity
to multi-camera setups, as it falls beyond the core scope of QDP. Extending the framework to
open-set assembly tasks—by enriching part representations and accommodating more diverse object
geometries—remains a key direction for future research.

References

[1] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[2] O.M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,
2024.

[3] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. A vision-language-action flow model for general robot control. arXiv preprint
arXiv:2410.24164, 2024.

[4] Y. Lee, E. S. Hu, and J. J. Lim. Ikea furniture assembly environment for long-horizon complex
manipulation tasks. In 2021 ieee international conference on robotics and automation (icra),
pages 6343-6349. IEEE, 2021.

[5] M. Heo, Y. Lee, D. Lee, and J. J. Lim. Furniturebench: Reproducible real-world benchmark for
long-horizon complex manipulation. arXiv preprint arXiv:2305.12821, 2023.

[6] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

[7] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei. Rekep: Spatio-temporal reasoning of
relational keypoint constraints for robotic manipulation. arXiv preprint arXiv:2409.01652,
2024.

[8] J. Zhang, M. Heo, Z. Liu, E. Biyik, J. J. Lim, Y. Liu, and R. Fakoor. Extract: Efficient
policy learning by extracting transferable robot skills from offline data. arXiv preprint
arXiv:2406.17768, 2024.

[9] H. Lin, R. Corcodel, and D. Zhao. Generalize by touching: Tactile ensemble skill transfer for
robotic furniture assembly. arXiv preprint arXiv:2404.17684, 2024.

[10] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[11] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:2205.09991, 2022.

[12] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[13] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084-15097, 2021.

10

[14] L. Wang, X. Chen, J. Zhao, and K. He. Scaling proprioceptive-visual learning with heteroge-
neous pre-trained transformers. arXiv preprint arXiv:2409.20537, 2024.

[15] C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song. Iterative residual policy: for goal-
conditioned dynamic manipulation of deformable objects. The International Journal of Robotics
Research, 43(4):389-404, 2024.

[16] R. Ahmad and P. Plapper. Safe and automated assembly process using vision assisted robot
manipulator. Procedia Cirp, 41:771-776, 2016.

[17] K. Yu, Y. Han, Q. Wang, V. Saxena, D. Xu, and Y. Zhao. Mimictouch: Leveraging multi-modal
human tactile demonstrations for contact-rich manipulation. In 8th Annual Conference on Robot
Learning, 2024.

[18] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei. Transic: Sim-to-real policy transfer by
learning from online correction. arXiv preprint arXiv:2405.10315, 2024.

[19] Y. Tian, K. D. Willis, B. Al Omari, J. Luo, P. Ma, Y. Li, F. Javid, E. Gu, J. Jacob, S. Sueda, et al.
Asap: Automated sequence planning for complex robotic assembly with physical feasibility. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pages 4380—4386.
IEEE, 2024.

[20] Y. Tian, J. Xu, Y. Li, J. Luo, S. Sueda, H. Li, K. D. Willis, and W. Matusik. Assemble them
all: Physics-based planning for generalizable assembly by disassembly. ACM Transactions on
Graphics (TOG), 41(6):1-11, 2022.

[21] Y. Li, A. Zeng, and S. Song. Rearrangement planning for general part assembly. In 7th Annual
Conference on Robot Learning, 2023.

[22] R. Wang, Y. Zhang, J. Mao, R. Zhang, C.-Y. Cheng, and J. Wu. Ikea-manual: Seeing shape
assembly step by step. Advances in Neural Information Processing Systems, 35:28428-28440,
2022.

[23] L. L. Ankile, A. Simeonov, I. Shenfeld, M. T. Villasevil, and P. Agrawal. From imitation to
refinement-residual rl for precise visual assembly. In CoRL 2024 Workshop on Mastering Robot
Manipulation in a World of Abundant Data, 2024.

[24] A.Z.Ren,J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal, A. Majumdar, B. Burchfiel, H. Dai,
and M. Simchowitz. Diffusion policy policy optimization. arXiv preprint arXiv:2409.00588,
2024.

[25] D. Driess, J.-S. Ha, and M. Toussaint. Learning to solve sequential physical reasoning problems
from a scene image. The International Journal of Robotics Research, 40(12-14):1435-1466,
2021.

[26] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

[27] Y. Lee, J. J. Lim, A. Anandkumar, and Y. Zhu. Adversarial skill chaining for long-horizon robot
manipulation via terminal state regularization. arXiv preprint arXiv:2111.07999, 2021.

[28] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and
P. Battaglia. Compile: Compositional imitation learning and execution. In International
Conference on Machine Learning, pages 3418-3428. PMLR, 2019.

[29] A. Mandlekar, C. R. Garrett, D. Xu, and D. Fox. Human-in-the-loop task and motion planning
for imitation learning. In Conference on Robot Learning, pages 3030-3060. PMLR, 2023.

11

[30] R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava, E. Groshev, C. Lin, and P. Abbeel.
Guided search for task and motion plans using learned heuristics. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 447-454. IEEE, 2016.

[31] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint
arXiv:2403.03954, 2024.

[32] J. Yang, Z.-a. Cao, C. Deng, R. Antonova, S. Song, and J. Bohg. Equibot: Sim (3)-equivariant
diffusion policy for generalizable and data efficient learning. arXiv preprint arXiv:2407.01479,
2024.

[33] S. Wu, Y. Zhu, Y. Huang, K. Zhu, J. Gu, J. Yu, Y. Shi, and J. Wang. Afforddp: Generalizable
diffusion policy with transferable affordance. arXiv preprint arXiv:2412.03142, 2024.

[34] W. Li, X. Wang, B. Jin, and H. Zha. Hierarchical diffusion for offline decision making. In
International Conference on Machine Learning, pages 20035-20064. PMLR, 2023.

[35] C. Chen, F. Deng, K. Kawaguchi, C. Gulcehre, and S. Ahn. Simple hierarchical planning with
diffusion. arXiv preprint arXiv:2401.02644, 2024.

[36] X.Ma, S. Patidar, I. Haughton, and S. James. Hierarchical diffusion policy for kinematics-aware
multi-task robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18081-18090, 2024.

[37] Z. Liang, Y. Mu, H. Ma, M. Tomizuka, M. Ding, and P. Luo. Skilldiffuser: Interpretable
hierarchical planning via skill abstractions in diffusion-based task execution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16467-16476,
2024,

[38] C.R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4(1):265-293, 2021.

[39] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rédle, C. Rolland,
L. Gustafson, et al. Sam 2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024.

[40] A. S. Chen, A. M. Lessing, A. Tang, G. Chada, L. Smith, S. Levine, and C. Finn. Com-
monsense reasoning for legged robot adaptation with vision-language models. arXiv preprint
arXiv:2407.02666, 2024.

[41] B.Zheng, B. Gou, J. Kil, H. Sun, and Y. Su. Gpt-4v (ision) is a generalist web agent, if grounded.
arXiv preprint arXiv:2401.01614, 2024.

[42] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes
extraordinary visual grounding in gpt-4v, 2023. URL http://arxiv. org/abs/2310.11441, 2023.

[43] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 652—-660, 2017.

[44] Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany, and Y. Zhu. robo-
suite: A modular simulation framework and benchmark for robot learning. arXiv preprint
arXiv:2009.12293, 2020.

[45] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

12

A Additional Experiment Details

A.1 Model Training Details

Table 2: Hyperparameters of Sub-Task Diffusion Models in QDP

Hyperparameter \ Values

U-Net Hidden Dims [256, 512, 1024]
U-Net Kernel Size 5

U-Net GroupNorm Num of Groups | 8

Diffusion Step Emb Dim 128

Observation Horizon T, 2

Prediction Horizon T}, 16

Action Horizon T, 8

DDPM Training Steps 100

DDIM Inference Steps 16

Optimizaer Adam

Learning Rate le-4

Learning Rate Scheduler Cosine Annealing
Weight Decay le-6

Batch Size 256

Table 3: Hyperparameters of Low-Level Query-centric Encoder

Hyperparameter

| Value

(1) Point Cloud Encoder & Other Embeddings

PointNet Hidden Dimensions

[64, 128, 256]

PointNet Activation Function GELU
PointNet Embedding Dimension 512
Query Embedding Dimension 32
End-effector Embedding Dimension | 32

(2) Feature Fusion MLP

MLP Hidden Dimensions [512, 256, 128]
MLP Activation Function ReLU
MLP Dropout Rate 0.1

(3) Training Configuration

Optimizer Adam
Learning Rate le-3

Learning Rate Scheduler
Weight Decay
Batch Size

Cosine Annealing
le-6
256

The architecture of the low-level query-conditioned model begins with a PointNet-based point cloud
encoder. Numerical queries from the high-level sequence generator are embedded using a lookup
table. The end-effector states are encoded by a simple MLP without hidden layers. These features are
then concatenated and fused through another bigger MLP, and the resulting representation is used to
predict the estimated states. We then train our sub-task action decoder conditioned on these states.
Hyperparameters of the low-level models are shown in Table 2 and 3.

A.2 Real-world Hardware Setup

We deploy our framework on the Kinova Gen3 collaborative robot arm, using four RealSense D435
cameras to capture real-world point clouds and video frames. The furniture parts are reset to a

13

Stabilize

1.00 1.00
L
= 0.75 4 % 0.754
~ ~
£ 0.50 0.50
(5] 5]
! E
& 023 & 0.25

E 5
0.00" " " " T ; 0.00"
200 400 600 800 1000
Insert Epoch

1.00 1.00
L
= 0.751 «E 0.75
~ ~
£ 0.501 =" 2 0.50
5] r 3]
2 2 0.25

0.251 25
e 5 ?n/§ e 2 M

a8 —g—— |8 —5— g
0.00+— * y y y 0.00" T = T T -
500 1000 1500 2000 2500 100 200 300 400
Epoch Epoch
---- QDP-A —— QDP —— DP3 —— BC

Figure 7: Learning curves for comparison of four methods: QDP, QDP with only the sub-task action
decoder (QDP-A), DP3 and BC. QDP demonstrates a better performance and faster convergence
especially in bottleneck sub-tasks such as insert and screw.

relatively fixed state, with randomness introduced in their position and rotation. We use a paperboard
to fix the position of the stabilizer relative to the robot arm. To avoid singularities during grasping,
the furniture legs are repositioned to a standing position. However, we argue that this setup does not
simplify the task, as a random yaw rotation is also applied, adding complexity to the scenario.

For real-world applications, we first integrate point clouds captured by all four cameras in the world
frame and then clip out the workspace. Since the synthetic point clouds in the simulation are generated
based on mesh surface density, it is essential to preprocess the real-world point clouds through voxel
down-sampling. Additionally, we segment the ground plane and filter out any outliers. After a final
down-sampling step, we retain a total of 4096 points, as is illustrated in Figure 3(f).

Our policy outputs an action chunk consisting of end-effector delta poses in simulation and absolute
poses in real-world experiments. To satisfy the quasi-static assumption, the Kinova Gen3 robot arm
tracks the first eight points in the action chunk orderly, naturally resulting in longer motion durations,
while model inference time is tested comparable to that of the original Diffusion Policy.

A.3 Low-level Evaluation Protocol
A.3.1 Data Collection

Full task trajectories are collected using pre-defined FSM on the Isaac Gym simulation environment.
To improve generalization, we introduce a jitter at each step, applying it uniformly to the states of
every asset involved. For the furniture assets, we use a synthetic point cloud that is subsampled from
mesh files, eliminating the need for prolonged rendering in simulation environments. For the robot
arm, we mitigate the sim-to-real gap by collecting real-world point clouds of the gripper in both
Open and Close modes, which replace the synthetic point clouds. Every demonstration is not only
initialized with a Medium randomness [5], but also has a randomly sampled execution order of the
furniture parts, representing different sequences generated by the high-level sequence generator. We
constrained the order of the insertion holes, since a different order may result in a collision with the
previously inserted parts. We collect a total of 300 full-task demonstrations of the square table with
randomly generated execution sequences in simulation. Given the high step count involved in the
screw sub-task, we limit each demonstration of screwing to 50 steps, combining these with other
sub-tasks to train the student estimator.

14

A.3.2 Baseline Implementation Details

For a fair comparison, we implement the same PointNet backbone for all the baselines and our QDP
in the experiment and evaluate per-skill performance among them. To ensure a consistent comparison,
we focus on executing a fixed leg, as the baseline methods tend to underperform in a multi-component
assembly setting. We use the same number of demonstrations for the fixed leg as in the dataset for
each approach. Since QDP has two learning stages, in order to fairly compare the convergence, we
pair intermediate checkpoints of pose estimation with intermediate checkpoints of teacher policy.

A.3.3 Ablation and Breakdown Study

Besides the aforementioned baselines, we also evaluate the performance of QDP’s low-level ablation
variants: QDP without the rotation invariance assumption (w/o rot-inv), where instead of using two
euler angles representing rotation, we use full quaternions. QDP without query-centric (w/o query),
where instead of using the queried states, we estimate the states of all furniture parts jointly and
choose the queried part heuristically.

We also perform three breakdowns of the success rate on low-level policies. 1) We introduce a shape
transformation by twisting the furniture leg (v/ shape: shape variation, as shown in Figure 6), which
challenges the generalization of the state estimation module with point cloud input. 2) To ensure
numerically valid results, we evaluate the One Leg task on the final leg to be assembled, randomly
varying the assembly order for the last hole (v/ order: order variation). For example, we randomly
arrange the hole closest to the camera to be the last one assembled, while the other holes have already
been completed. 3) Building on the One Leg setup, we introduce an additional variation where we
perturb the tabletop randomly when executing each sub-task (v/ tabletop: tabletop variation). This
setup is conducted both in simulation and real-world, designed to validate the robustness of low-level
skills.

For the baselines, ablation study, and shape variation in the breakdown study, each evaluation is
conducted 5 times, each 50 roll-outs in the simulation environment, using 10 parallel environments and
randomly generating an executable order during the reset process. Other evaluations are conducted 5
times, each 10 roll-outs in single simulation environments, with the setup tailored to their specific
configuration.

A.4 High-level Evaluation Protocol

The QDP high-level policy was evaluated through a comprehensive analysis comprising two parts:
ablation studies and robustness tests. In the ablation studies, we evaluated the policy’s performance
across various variants. For the robustness test, we evaluated the policy’s ability to handle and recover
from perturbations.

A.4.1 High-level Ablation Study Details

The ablation study focused on evaluating the performance of QDP’s high-level variants: QDP without
VLM-PC (w/o VLM-PC), where the installation sequence is generated solely based on the initial
frame, without utilizing VLM Predictive Control. QDP without marker (w/o Marker), this variant
excludes the markers generated by SoM in the input image. QDP without interaction history (w/o
History), this variant excludes interaction history input to the VLM. Additionally, we analyzed the
impact of history length on the policy’s performance.

A.4.2 Evaluation Procedure

To evaluate the performance of the high-level policy independently from the low-level policy since
a correctly chosen skill might fail due to the inherent randomness of the low-level policy. In cases
where the chosen skill failed during execution, we reset the simulated environment to its state before
execution and attempted to re-execute the skill. If the skill could not be successfully executed within

15

a predefined retry limit, it was considered a failure. Otherwise, we proceeded to evaluate the next
chosen skill. We utilized GPT-40 as the VLM for the evaluation process.

A.5 Additional assumptions

We assume smooth transitions between consecutive sub-tasks within the skill chaining process. We
make our best efforts to ensure the terminal state of a given sub-task is a subset of the initial state of
the subsequent sub-task.

16

	Introduction
	Related Work
	Problem Formulation
	Methodology
	High-level: Sequence Generator
	Low-level: Query-conditioned Action Generator

	Experiments
	Environment Design
	Results and Analysis

	Conclusion
	Additional Experiment Details
	Model Training Details
	Real-world Hardware Setup
	Low-level Evaluation Protocol
	Data Collection
	Baseline Implementation Details
	Ablation and Breakdown Study

	High-level Evaluation Protocol
	High-level Ablation Study Details
	Evaluation Procedure

	Additional assumptions

